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Abstract

CEBAF is a CW five pass recirculating linac with an energy gain of 800 MeV per
pass. As a result, multiple beams of different energies are present simultaneously in the
straight section beamlines. In these sections, it is required that the position of each beam
be measured separately. One method of accomplishing this involves modulating the beam
current for a duration of less than one revolution period. With a modulated beam, position
can be measured by either a multi-gigahertz pickup operating at a harmonic of the 1.5
GHz RF, or a pickup that responds to the lower modulation frequency. In this paper, the
concepts of a simple inductive loop beam position monitor system based on the detection

of a 1-10 MHz amplitude modulated beam are presented.

Introduction

In the linac sections of the CEBAF accelerator, up to five beams of different ener-
gies may be present simultaneously in the same vacuum chamber. In order to track the
transverse position of a single beam during each of its passes, a method of distinguishing
it from the other beams is necessary. One method of accomplishing this is to sinusoidally
amplitude modulate the CW beam for a duration of less than the circulation time in the
machine (4.2 usec). In addition, the time interval between modulation bursts should be
greater than five circulations (21 usec) so as to allow a given burst to exit the machine
before the next one is introduced. During normal operation of the accelerator, the mod-
- ulation is impressed on the beam from time to time without interrupting the continuous
flow of electrons. A beam position monitor that responds to the modulation frequency
provides the capability to measure the position of a single beam from entrance to exit. In
order to make the same measurement with RF monitors, the continuous flow of the beam

has to be interrupted. However, during the time the beam is not modulated, the current
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design plan calls for 3 GHz sum and difference mode cavity pairs for continuous beam
position monitoring.(!!

The low frequency monitors to be described in this paper consist of simple inductive
loops inside the vacuum chamber. For several practical reasons to be discussed, the op-
erating frequency of the monitors is in the 1-10 MHz range. Because of the simple loop
design and relative ease of designing electronics in the 1-10 MHz range, these monitors are
excellent low cost alternatives to stripline or cavity monitors which work at some harmonic
of the RF. The high cost of cavity and stripline monitors is attributed to stringent me-
chanical tolerances and expensive microwave electronics. In view of these cost differentials,
it is currently proposed that loop monitors be used for all beam position measurements in
tune-up or diagnostic modes of machine operation.

The majority of this paper is devoted to the theory of the inductive loop pickup. The
equations relating difference to sum voltages to transverse beam position are derived first.
Following this, the longitudinal and transverse pickup impedances for the loop monitor
are calculated. Approximate relationships between difference to sum voltages and beam
position along with a calibration scheme are then discussed. Finally, external electronics

and initial test results are touched upon.

Inductive Loop Theory

A schematic side view and cross section of an inductive loop beam position monitor
appears in Figure 1. The simple monitor consists of four rectangular loop pickups located
inside the beampipe on the =z and +y axes as shown in Figure 1b. The terminal voltages
at each pickup will be proportional to the time rate of change of the total magnetic flux
intercepted by the loops in accordance with Faraday’s law. The analysis of the loop
monitor therefore consists of finding the voltages at all four terminals as a function of
beam position rp,$,. Several features of this particular problem simplify the analysis
appreciably. For highly relativistic particles, the electric and magnetic fields are confined
to the plane transverse to the beam. In addition, the beampipe and loop dimensions
are extremely small compared to a wavelength in the 1-10 MHz range. As a result, the
beam current may be considered to be uniform in z over the length of a loop and static
electric and magnetic vector potentials may be used to determine the fields. However,
AC boundary conditions are employed. Time harmonic fields and a perfectly conducting
beampipe are assumed.

Referring to Figure 1, the voltage at the terminal of any loop is related to the beam
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Figure la. Side view of inductive loop beam position monitor.
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Figure 1b. Cross section of inductive loop beam position monitor.




current through the mutual inductance, M, between the beam and the loop:

V=juMIL . (1)

The mutual inductance is a function of beam position relative to & given loop. Thus, for
a given beam position, each loop has a mutual inductance designated in Figure 1b by
Mt M7, M 4> and M. In order to obtain current independent position information, the
standard technique of taking z and y difference to sum voltages is employed. Referring to
Figure 1b and equation (1), the z and y difference to sum voltages, V; and V, are defined
by:

_ My -M;
Mt + Mz

(2a)

My -M,
VS I T o= (Zb)
My + My
From (2), it is seen that the difference to sum voltage responses are functions of the mutual
inductances, which are in turn, dependent only on the geometry of the pickups.

The mutual inductance between the beam current and a loop is given by:
M=1 f Fa@. (3)
ILJ,

In (3), B is the magnetic flux from the beam and s is the surface enclosed by the loop.

Atlernatively, using Stoke’s theorem, M may be written as:

1 —
M=2¢%-d, (4)

where A = A, is the vector potential for a beam current in the # direction. In (4), the
path for the integral is the loop. Although it will not be needed, the B field can be
calculated from A through:



— —
B=Vx A. (5)

To calculate A,, the method of images for uniform currents is employed. Boundary
conditions require the B field to be zero inside the perfectly conducting beampipe wall.
This implies a constant A, everywhere on this boundary. As shown in Figure 2, this
condition may be realized by removing the beampipe and placing an image current, —I,
a distance r; from the origin along the line adjoining the origin and I;. The distance r; is

related to the beampipe radius, a, and the radial coordinate of the beam, rq, by:l2]

s = a’/ro . (6)

The solution for A, from I, and its image will be valid everywhere inside the beampipe
(r <a).
In general, the vector potential may be derived from a volume integral over all source

currents:

—_
!
A(T) = i‘z[ __J'(’l dv’ | (7
4 v! |—r-)- — r’l

where:

—
r' = source position vector z’,y’, 2/
T = fleld point position vector z,y, z
—_—
7 -7 = VE TGy .

In Figure 2, the beam current and its image are assumed to be line currents parallel to the

2z axis and infinite in extent. Therefore, the current density, J,, in (7) may be written:

J:(z',y') = é(z' — 20)6(v' — wo) — (2’ — z)6(y' — w) - (8)



Because of symmetry, the integral in (7) may be computed for the z = 0 plane with no
loss in generality. Substituting (8) into (7) and integrating over z’ and y’ while taking
advantage of even symmetry about z = 0 yields:
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Figure 2 Geometry for calculating magnetic vector potential by method of images.



Performing the integral in (9) and converting to cylindrical coordinates gives the final

expression for A4,:

- St [t mocals o]
Az(", ¢) - 4T In[,d + r‘? - 2rr; cos(¢ - ¢0) ’

where:
ro, ¢o are beam coordinates

ri=allry .

The mutual inductance between an axial beam current at position ry, ¢g and a rect-
angular loop pickup may be found from expression (4) where 4= A, is given by (10).
The path for the integral is illustrated in Figure 3a. In Figure 3a, the loop is located at an
arbitrary angle, ¢, inside the beampipe and has a width @ — 4. The two short sections of
the loop do not contribute to the integral in (4) because they are normal to the direction

of 4. The mutual inductance between the beam current and the loop is then:

1 { 4]
M=z /0 A (b, $)dz + f‘ Au(a, d)dz . (11)

Substituting (10) into (11) and performing the integrals yields the final expression for M:

(12)

ol In [b’rg ~ 2brg cos(¢ — ¢o) + 1]
4r

= Hot
M(r,, do, ¢) = rd — 2brg cos(¢ — @g) + b2

In (12), @ has been set equal to unity for convenience. Therefore, all radial coordinates
and dimensions will be normalized to the beampipe radius a. The values of ¢ for the four
pickups in Figure 1b are given in the following table:
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Figure 3a. Integration path for rectangular loop.

Figure 3b. Integration path for helical loop.
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M} 0
M n
M} /2
My 3r/2

Table 1. Rectangular loop pickup angles.

The z and y difference to sum voltages defined in {2) may now be evaluated as a function
of beam position, ro, o, using the above values of ¢ and equation (12).

A plot of z difference to sum voltage, V;, as a function of radial beam position for
several azimuths from 0° to 90° is shown in Figure 4. Here, the normalized radial distance,
b, to the pickups is taken to be .7. This translates to approximately .5” for the 1.4” L.D.
beampipes in the CEBAF injector and linac sections. From Figure 4, the voltage response
is seen to be a linear function of beam position for regions close to the origin.

In general, equations (2) and (12) constitute a mapping from the beam position plane
to the difference to sum voltage plane, Ve, V,. Further insight into the response of the
loop monitor is obtained by mapping lines of constant zo,yo into the Vz,Vy plane. This
mapping for b = .7 is shown in Figure 5. In the V,, Vy plane, the “squareness” of the grid
gections indicates linearity and the curvature of the grid lines indicates the degree to which
V2 depends on yo and V,, depends on zo. Thus, a region with straight grid lines and square
grid sections means V; is a linear function of zg only and V, is a linear function of yg only.
As shown in Figure 5, this region is confined to the approximate area ro < .2. Outside
this region, V; and V,, are, in general, non-linear functions of both position coordinates.

In an attempt to expand the linear region of the monitor, the properties of helical loop
pickups were investigated. In this case each loop follows a helical path subtending 180° in
¢ over the length of the monitor, ! {Figure 3b). The mutual inductance is computed using
equations (10) and (11) as with the planer loop, however the variable ¢ is now a function
of z according to:

¢=1rlf+¢.. (13)
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In (13), ¢, is the initial angle of the helix at z = 0 (shown as 0° for the loop '
3b). Using (13) in (10) and (11} results in an expression similar to (12) for th
inductance between the beam and the helical pickup:

ol 7 [b’ra — 2brpcos(f + ¢s — do) + l}dﬂ

Mlro,d0:84) = 5 | 1 3 Sbrg con(d + 6 — B0) + B2

The values of ¢, for the four pickups of a complete monitor are given as:

M ¢s
MF 3x/2
Mz 72
M} 0
M, .

Table 2. Helical loop pickup angles.

Plots similar to those of Figures (4) and (5) for the helical pickups are shown in Fi.
(6) and (7). In constructing the plots, the integral in (14) was evaluated numericalls
b was again assumed to be .7. From Figure 6, it is evident that a certain degr

linearity has been achieved for values of ¢¢ up to 45°. However, Figure 7 reveals th:

" and V,, are still strongly dependent on both position variables outside the region ro

In addition, the smaller grid sections in the mapping for the helical loops indicates
position sensitivity. This point will be examined in more detzil in the next section
view of its limited advantages over the planar loop monitor and mechanical comple:

the helical monitor was deemed to be impractical.
Pickup Impedances for Loop Monitors

In this section, two useful figures of merit, the longitudinal and tranasverse pic.
impedances, are calculated for the loop monitor. The longitudinal pickup impedanc
defined as the sum voltage from a pickup pair divided by the beam current for a cente
beam. For symmetrical monitors, the £ and y longitudinal impedances are identical :
are designated by Z). Using the z axis pickups, Z) may be written:
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2=

Ves|  =jw(Mf+M7) . (18)

ro=0 ro=0

Using equation (12) with ro = 0, the expression for Z)| becomes:

wuol 1
Zy = J—,} ng (0], (6)

The transverse pickup impedance relates the change in difference voltage for a pickup
pair to a change in beam position along the axis connecting the pickup pair. Again, for
symmetrical monitors, the z and y transverse impedances are identical and may be defined
using the z axis pickups:

- 1 aVAz - a + —
Z) (o) = Iy 9z0 |, o JWE(M:: M) o (17)

Unless the difference voltage is linear, Z, will be a function of position. However, it
is common practice to define Z L for small displacements from the origin. Under this
condition, Z, may be found by substituting (12) into (17) with ¢y = 0, differentiating
with respect to ry and taking the limit as rg — 0. The resulting expression for Z, is:

_ Jwuol (1 - 53)
2. = ” b

). (18)

In (18) the units of Z, are ohms per unit distance normalized to the beampipe radius a.
Z | may also be expressed in terms of Zy:

-1

Z, = -Em-—z” . (19)

Additional information regarding the position sensitivity of the loop monitor may

be obtained from Zj and Z,. For small values of Zg, Vpz = 2Ly and Vo, = Z| Iyz,.
Therefore, the z difference to sum voltage is:



Vy= (—-—):z:o zo << 1. (20)

Hence the ratio Z, /Z) gives the slope of the difference to sum voltage curve for beam

positions on the z or y axis near the origin. From (19) the slope is:

(21)

For b=.7, m is 2.04. This value is easily verified by examining the ¢y = O curve
in Figure 4. A Taylor series expansion of (21) about b = 1 shows, that for 5 > .6,
the approximation m = 2 is accurate to better than 5% and is exact in the limit b —
1. It is interesting to note that m ~ 2 is, in general, characteristic of all coaxial type
position monitors (i.e., loop, capacitive plate, stripline), provided the pickup elements do
not subtend angles greater than approximately 25°. For pickups that subtend large angles
approaching 180°, the value of m is approximately 4/x. This is the case for the helical
monitor because a given pickup subtends 180° of the beam. Examination of the ¢0o=0
curve in Figure 6 shows that its slope is indeed 4/ for small values of ro. In addition, the
dimensions of the grid sections near the origin in Figures 5 and 7 are directly proportional
to m. Comparing the grid sections shows that the planar loop monitor is about 1.6 or 7 /2
times more position sensitive than the helical monitor.

The ratiom = Z; /Z” is seen to be an important quantity for describing the perfor-
mance of the loop monitor. It is solely a function of the pickup geometry and defines the
position sensitivity of the monitor. A large value of m is desireable for good position reso-
lution. This is best accomplished by decreasing b, but is usually difficult to do in practice

~without limiting the beam aperture. It is also very important to maximize Z) and Z, in

order to raise the level of the absolute difference and sum signals sufficiently above the
noise floor. The simplest method for obtaining high Z) and Z, internal to the monitor is
to use long loops loaded with a high permeability material such as ferrite. As discussed
in a latter section, the impedances may also be substantially increased by resonating the
pickups and using external voltage step up transformers.

At this point it is worthwhile to restate the important formulas of this section in terms
of absolute distances:



fwiel . a
=P mz (o] (22)

Ly b

2
Z, = a—Z" [/m)] (23)
m = :21- [m~1]. (24)

Approximate Expressions for V; and V,,

For the loop monritor to be a useful device, one must be able to determine beam
position from V; and V},. In general, this task involves solving equations (2) and (12) for
ro and ¢g. However, these equations are sufﬁcienﬂy complicated that it is imnpractical to
solve them directly. Instead, one of several approximations relating beam position to V,
and V), can be used. The simplest and most obvious approximation is to assume that V:
and V), are linear functions of zo and yo respectively with slope m. However, it was shown
in a previous section that this approximation is only valid in the region rg < .2. Another
commonly employed technique involves storing a large number of position /voltage data
points determined by calibration on a computer. Position coordinates given V; and V,, are
then found by 2 search algorithm and some type of interpolation. Although this method
is quite accurate, the number of data points required makes calibration cumbersome. In
addition, search algorithms can use a significant amount of computer time and are not
desireable for real time measurements. As an alternative to these methods, the technique
described presently for determining position involves simple approximate expressions for
Vz and V), that are accurate well outside the linear region.

In deriving approximate versions of equations (2) and (12), the polar mapping shown
in Figure 8 is of considerable use. Here, circles of different radii in the beam position plane
have been mapped by (2} and (12) to the V,, V, plane for 6 =.7. It is immediately noted
that circles in the position plane are mapped into circles in the Vz, V}, plane for values of

ro out to .4 and beyond. This suggests the following approximate forms for V:and V:

V,(ro, qSQ) =V, (!’o) cos ¢g (253)



Viy(ro, do) = Vi (ro) sin ¢p .
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to difference to sum voltage plane.

From equations (25), the ¢p coordinate of beam position is found immediately:

V,
@0 ~ tan™! (—”) proper quadrant .

It is also evident that:

Vo= \V2+va.

(25b)

(26)

(27)



From (25a), it is readily seen that V,(ro) = V;(ro,0), where V, is given by equations (2a)
and (12). Thus, the ¢o = O curve in Figure 4 is a plot of V;(rg). The task now is to find

an approximate expression for this curve.

A third order Taylor series expansion of Vi(r0,0) about rg = 0 gives:

Ve(ro) = ag + a1ro + a2rd + azrd , (28)

where:

1 8"Va(ro,0)
n!  0Or}

n =

(29)

!‘ozo

In (28), ao is obviously zero (see ¢g = O curve in Figure 4). By direct differentiation, a, is
also found to be zero, and a; and a3 are found to be:

-1
%= b (30)
_ 1 6y, o (1 —08)(1—b%)
a3 = ~ = 2(1 - 49) + 3 = X (31)

For values of b > .6, the approximation a; = a3 is good to better than 1.25% and is exact
in the limit 6 — 1. For b = .7, this approximation is in error by only .3%. It should
also be noted that the coefficient ¢, is identically the slope, m, given by (21). Using this
information, (28) reduces to:

Vi(ro) = m(rg — r3) . (32)

In principle, equation (32) can be solved directly for rg in terms of V,. However, the algebra
is complicated and does not yield a compact solution. Instead, another approximation is

used. It is noted thet the expansion in (32) resembles that of the inverse tangent function.
Therefore, let:



ck3rd
T

Ve(ro) = ctan™! kro = ckrg — (33)

By equating coefficients of like powers in (32) and (33), the following expressions for ¢ and

k are found:

c=m/V3 (34)

k=+v3. (35)

Finally, using (33) and (27), an approximate expression for the radial coordinate is found:

1 1
O —— — 2
ro v \/_ta.n ‘/3(V3+Vy) . (36)

Together, (36) and (26) can be used to determine beam position as a function of z and v
difference to sum voltages. In terms of absolute distance, the value of rq obtained by (36)
should be multiplied by the beampipe radius a.

The accuracy of equations (26).a.nd (36) is illustrated in Figures 9 and 10. Both
figures plot, for b = .7, the absolute errors in ro and $o due to the approximations. Here,
absolute error is defined as approximate value minus true value. In Figure 9, the error in
ro and ¢y is plotted as a function of ry for several values of ¢o. Similarly, in Figure 10
these errors are plotted as a function of ¢o for several values of ry. From the plots, it is
seen that the error in radial position increases with distance from the center of the monitor
and is a maximum along the radius at ¢p = 45°. Referring to Figure 10, for rq = .56, (80%
of the distance to the pickups) the maximum error in rq is .072. For the 17.3 mm radius
beampipes in the injector and linacs, this translates to a radial position error of 1.25 mm
or 13%. For ro = .42, (60% of the distance to the pickups) the error in radial position is
only .43 mm or 86%. For smaller values of ro and other angles, the radial error is much less.
Figures 9 and 10 also show the error in ¢o is maximum in the 19° — 22.5° and 67.5° — 71°
regions depending on the value of ro. At 80% of the distance to the pickups the maximum
error in ¢o is .65°, at 60% the error is .57°. To summarize, inside the region ro < .42



the approximations (26) and (36) introduce maximum errors in ro and ¢q of 6% and .6°
respectively. In most cases, the errors are considerably less than these maximums.

In general, the approximation (36), as it stands, is difficult to apply in practice.
Because (36) is in terms of normalized slope and distance, a knowledge of the pipe radius,
a, is required to apply it to an actual monitor. Although a can be measured physically,
the value obtained in this manner will not yield accurate results when used in conjunction
with (36) because of differences between the real monitor and the theoretical model. Two
of the more obvious faults in the model are the assumption of perfect conductors and
infinitesimal loop wires. However, the main assumptions and results leading to (36) are
still assumed to be valid for an actual monitor. In particular, in terms of absolute radial
coordinate, Ro, V, is assumed to take the form:

V.-(Ro) ~ AlRo - AaRg . (37)

From this, a result similar to (36) may be obtained:

/ Ay 1 3A3
=t —_t —_— =2 (V2 4V,
Ro . ar 1¢ ) ( z + y) (38)

Equations (38) and (26) relate absolute beam position to measured difference to sum

voltages. In order to apply (38), the coefficients A; and A; must first be determined
through calibration.

The calibration consists of measuring V, = V,, for a beam or current on a wire at two
known positions on the positive z axis. The two values of Rg and V, can then be used in
(37} to solve for A; and A3. The resulting coefficients will depend slightly on the choice of
calibration positions and will be slightly different from those obtained by a Taylor series
expansion. However, it is still rea,sonable to believe that Figures 9 and 10 provide a good
approximate error estimate for this technique. By choosing calibration points close to the
origin, the resulting coefficients will resemble those obtained by the Taylor series method.
The result of spreading out the calibration points will be to slightly increase accuracy at
larger radii and slightly decrease accuracy at small radii.

The approximations and calibration techniques described above assume a symmetric

monitor whose physical and electrical centers coincide. The monitors themselves can be



constructed to an accuracy of a few mils so that any discrepency between physical and
electrical centers should be due to external electronics. By having separate gain adjust-
ments on each of the four pickups, the electrical and physical centers can easily be made

to coincide.

Practical Considerations

In this section, some of the practical aspects of a megahertz inductive loop beam
position monitor system for CEBAF are discussed. As stated earlier, the virtues of such a
system should be low cost and simplicity. When designing the system to meet these goals,
the most important considerations are sensitivity and noise. Presently, it is required that
the system be able to measure 1 mm displacements of a 1 #A beam.

The behavior of a practical loop monitor is best described using the idealized equiva-
lent circuit model shown in Figure 11. The circuit mode! is for a single pickup of a complete
monitor. In the equivalent circuit, the beam is represented by a current generator. The
loop pickup is represented by a mutual inductance, M, and has a self inductance, L. The
resistive element takes into account losses in the pickup such as finite loop and beampipe
conductivities. In addition, the loops and other parts of the circuit have intrinsic capaci-
tances represented by C. As previously mentioned, a toroidal ferrite core transformer has
been added to step up the output voltage. The transformer has the same effect as using an
n turn loop pickup, but is conveniently located outside the beampipe. The pickup response
is obviously resonant and may be characterized by the overall transfer impedance of the

circuit at resonance:

ZT = —_= WQMQ ) (39)

where:
wo = 1/VIC (40)
Q =wol/R (41)

M= Ez-g:- In % for a centered beam . (42)



It is clear by comparison with (15) and (17) that, by operating on resonance and using an

external transformer, Z) and Z, are increased by the desireable factor ngQ.
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Figure 11 Equivalent circuit of a loop pickup with ferrite core

step-up transformer.

It should be E;tressed that, although the equivalent circuit of Figure 11 is conceptually
useful, it is only an idealization and cannot be relied upon to predict pickup impedances. In
particular, properties of transformers in the megahertz range may not be ideal. Imperfect,
lossy windings give rise to external inductances, capacitances and resistances which alter
the resonant frequency and @ of the entire pickup circuit. In addition, the frequency
dependence of the core u’ and u” further complicates the overall @ and wq of the circuit.
Furthermore, the effective turns ratio is usually less than the actual turns ratio because
of these effects. Rather than trying to predict these effects with a complicated equivalent
transformer circuit, an optimum transformer/loop pickup combination is better determined
by trial and error measurements in the laboratory. The measurements are performed using
the standard technique of simulating the beam with a thin current carrying wire down the
center of the monitor.

For experimental purposes, a single pickup prototype monitor was constructed using

standard 1 3/4 ” LD. stainless steel tubing and & copper wire loop. The loop length, /, was



25 cm and the normalized radial distance to the loop was b = .7. By experimenting with
primary and secondary turns on several different ferrite cores, an optimum transformer
was developed for use with the prototype. In general, all of the transformer/pickup com-
binations yielded resonant frequencies in the 1-10 MHz range. This result along with the
availability of simple, low cost electronics in this frequency range, dictates the operating
frequency of the monitor system.

For the 25 cm prototype, the optimum transformer consisted of 2 primary turns and
34 secondary turnson a .54 ” 1.D., .87 * 0.D., .25 " wide Krystinel K21 ferrite toroid. The
transformer/pickup combination had a resonant frequency of 5 MHz, an overall Q of 30
and an 8002 transfer impedance. Calculation of M using equation (42) for the prototype
yields a value of 1.8 x 10~ h so that Zp = .56 nQ 1. Using the measured value for Z7
implies a value for nQ of 143. Therefore, by adding the ferrite transformer and operating
at resonance, the pickup impedances of the monitor were increased by a factor of 143.
The total longitudinal and transverse pickup impedances for the prototype/transformer

combination are:

Z” = 160 0]

Z; ~18 1/mm .

Another important component in the loop monitor system is the first stage amplifier at
the output of the transformer. The critical characteristic of this amplifier is high impedance
80 as not to lower the circuit Q. In addition, low noige, high gain, and low input capacitance
are also desireable features. For simplicity, OP-37 operational amplifiers in a differential
input configuration were used for first stage amplification. With these amplifiers and the
prototype monitor, a 1 uA current could be detected. This first result indicates that the
inductive loop monitor system is a viable approach for CEBAF. With the incoporation of
several improvements to the pickups and electronics, the final monitors are expected to be
sensitive enough to cleanly detect displacements of 2 100 nA beam.

Lastly, it is pointed out that the preceding measurements and calculations are for
the sinusoidal steady state. In reality, repetative bursts of modulation with maximum
durations of 7 = 3.3 us will be detected. Therefore, because of the resonant rise time, the
transient pickup impedances will be lower than the steady state values by a factor of:



y=1—ew/29 T (43)

For the prototype monitor, the value of -y is .0 for a 4 us burst and is not considered to be a
serious problem. In addition to rise time, the pickups also have a finite fall time. Because
of this, the final menitor electronics will include a provision for de-Q-ing the pickups in

between bursts.

Current and Future Efforts

As pointed out in the previous section, initial results indicate that the MHz inductive
loop monitors show great promise for use at CEBAF. It is clear, however, that much work
on the pickups and associated electronics still needs to be completed. Many of the tradeoffs
involving wo, Q, 4, n and available first stage amplifier gains need to be investigated more
thoroughly.

The current concept for the final pickups is illustrated in Figure 12. Here, each
loop is separately loaded with a high u ferrite to increase the transfer impedance, while
maintaining position sensitivity. The loops themselves are made of copper and are vacuum
deposited directly on the ferrite blocks. As shown in Figure 12, the copper loops completely
encircle the ferrite blocks. By cutting the stainless steel beampipe out of the loop circuit,
it is hoped that sensitivity will be increased because of reduced losses. In addition, the
copper deposited blocks are convenient, self-contained units that are easy to mount and
align inside the beampipe.

One concept for the final electronics is presented in Figure 13. The basic system con-
sists of a differential input preamplifier/amplifier and a phase lock loop based heterodyne
circuit for low noise signal detection. Several different high frequency, high impedance
operational and video amplifiers are currently being evaluated for the preamplifier appli-
cation. The majority of the phase lock loop detection circuit may be obtained on a single
low cost IC chip. To implement the heterodyning technique successfully, some modifi-
cations to the basic concept of Figure 13 are expected. In addition, other modulation
schemes may also be considered.

At present, a vacuum compatible, wire loop prototype monitor has been constructed
and will be-installed near the capture section in the injector. This prototype is expected
to aid in the evaluation of calibration procedures, external electronics and the feasibility

of the modulation concept in general.
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Figure 12 Concept for inductive loop pickups.
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